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1. Iterative Substructuring with Lagrange Multipliers for
Coupled Fluid-Solid Scattering

Jan Mandel!

1. Introduction. In [9], we have proposed an iterative method for the solution of
linear systems arizing from finite element discretization of the time harmonic acoustics
of coupled fluid-solid systems in fluid pressure and solid displacement formulation.
The method extended the FETI-H method for the Helmholtz equation [4, 6, 7, 12]
to coupled fluid-elastic acoustics. In this paper, we investigate a stabilization of the
discrete coupled system for the case when the solid scatterer is at resonance and
investigate computationally the convergence of the iterative substructuring method
for the modified system.

The main idea of the method of [9] is as follows. The fluid and the solid domains are
decomposed into non-overlapping subdomains. Continuity of the solution is enforced
by Lagrange multipliers. To prevent singular or nearly singular subdomain matrices
due to resonance, the continuity conditions betweeen the subdomains are replaced
by artificial radiation-like conditions. Because original degrees of freedom are coupled
across the wet interface, the system is augmented by duplicating the degrees of freedom
on the wet interface and adding equations enforcing the equality of the original and the
duplicate degrees of freedoom. The original degrees of freedom can then be eliminated
subdomain by subdomain and the resulting system is solved by Krylov iterations
preconditioned by a Galerkin correction on a subspace consisting of plane waves in each
subdomain. In each iteration, the method requires the solution of one independent
acoustic problem per subdomain, and the solution of a coarse problem with several
degrees of freedom per subdomain. The number of iterations in was most cases about
the same as the number of iterations of the FETI-H method for the related Helmholtz
problem with Neumann boundary condition instead of an elastic scatterer, which was
explained by numerical decoupling of the fluid and the elastic fields in the stiff scatterer
limit.

In this article, we propose a new artificial radiation-like condition on the wet
interface, and we observe in computational tests that that it it prevents deterioration
of convergence in the case of one solid subdomain at resonance. We also investigate
the sensitivity of the method to variants of artificial radiation condition between the
elastic subdomains.

Our radiation-like condition between elastic subdomains has been inspired by [2],
which generalized the alternating method of [5] to elasticity. Iterative methods con-
sisting of alternating solution in the fluid and the solid region are known [1, 3]. In [3],
the alternating method of [5] was extended to the coupled problem, with the wet inter-
face conditions replaced by their complex linear combinations. The resulting iterative
algorithm needs either access to normal derivatives or additional variables on the wet
interface. Our radiation-like condition on the wet interface is obtained by a simple
modification of the coupled system matrix, resulting in an equivalent algebraic system.
Since this process is unrelated to the substructuring method at hand, it may be of
independent interest.
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2 JAN MANDEL

2. The scattering problem. We need to describe the scattering problem and
the discretization used. This material is standard [11, 13] and it is included only for
completeness and to introduce the notation.

We consider an acoustic scattering problem with an elastic scatterer completely
immersed in a fluid. Let Q and Q. be bounded domains in £, = 2,3, Q. C Q, and
let Qp = Q\ Q, cf., Figure 5.1. Let v denote the exterior normal of Q.. Let 99 be
decomposed into disjoint subsets, 0 =y UI';, Ul',. The domain Qy is filled with a
fluid. The acoustic pressure at time ¢ is assumed to be of the form Re pe’?, where p is
complex amplitude independent of ¢t. The amplitude p is governed by the Helmholtz

equation

Ap+k’p=0 in Qy, (2.1)
with the boundary conditions
0 0
p=po on [y, op =0onT,, —p+ikp=00n Ty, (2.2)
ov ov

where k = w/cy is the wave number and c; is the speed of sound in the fluid.
The boundary conditions (2.2) model excitation, sound hard boundary, and outgo-
ing boundary, respectively. The amplitude of the displacement u of the elastic body
occupying the domain €2, satisfies the elastodynamic equation

V-T+w?pu=0 in Q, (2.3)
where 7 is the stress tensor and p. is the density of the solid. For simplicity, we

consider an isotropic homogeneous material with

1 811,' Ou;
T=M(V -u)+2pe(u), e;(u) = 5(655' + 333]')’
J K3

(2.4)

where A and p are the Lamé coefficients of the solid.
Let I' = 09, be the wet interface. On T, the fluid pressure and the solid displace-
ment satisfy
1 Op

u= —
prw? Ov’

Tv=—p, vXT1- V=0, (2.5)

where py is the fluid density. The interface conditions (2.5) model the continuity
of normal displacement, the balance of normal forces, and zero tangential tension,
respectively.

We use the following variational form. Define the spaces V; = {g € H (Q;) | ¢ =
Oon T4}, V. = (HY(Q))", where H' is the Sobolev space of generalized functions
with square integrable generalized first derivatives. Assuming that py on T'y is ex-
tended to a function in H'(Q;), multiplying equation (2.1) by a test function q € V¢,
equation (2.3) by a test function u € V., and integrating by parts, we obtain the
following variational form of (2.1) — (2.5): Find p such that p—po € V¢, and u € V,
such that for all ¢ € Vy and all v € V,

—/Vqu+k2/pq—ik/pq—wQ/pf(V-u)q=0,
r

of of Ta

~ [0 )+ 2ew) )+ [ peuw- 0= [ plo-0) =0,

Q. Q. r
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We replace Vy and V, with conforming finite element spaces and obtain the algebraic
system

—K; + k*M; — ikGy —psw?T p|l_|r (2.6)
-T/ -K. + w*M, ul| |0 ’

In the coupled system (2.6), p and u are the vectors of the (values of) degrees
of freedom of p and wu, i.e., p and u are the finite element interpolations of p and u,
respectively. The matrix blocks in (2.6) are defined by

p’Kfqz/Vp-Vq, p’quz/pq,
Qy Qg

PGa= [ WKz [(NT0)(T0) + 2pe(u) s e(0),

T Q.
WMy = [pa-e),  pTv= [pw-o)
Q. T

3. Iterative Substructuring. In this section, we summarize the iterative method
following [9]. Further details and a development of the method starting from FETI-H
can be found in [9]. The present method differs in the more general choice of artificial
radiation condition between elastic subdomains.

The fluid and solid domains are decomposed into nonoverlapping subdomains that
consist of unions of elements,

J— Nf J— J— Ne J—
o=, a={o. (3.1)
s=1 s=1

The fields and vectors of degrees of freedom corresponding to €2} and €27 are denoted
by p®, u®, p® and u®, respectively. The normal vector to 0€2° is denoted by v*.

The Helmholtz equation (2.1) is then equivalent to the same equation in each of
the subdomains Q%, with the interface conditions

op*  opt
¢ t
p® =", 55 ot 0, on 80; N 8Qf_ (3.2)

Similarly, the elastodynamic equation (2.3) is equivalent to the same equation in each
of the subdomains QF, with the continuity of the displacement and the traction on the
intersubdomain interfaces,

uw® =ut, T+ 1)t =0, on dNENONL. (3.3)

The continuity of the pressure and the displacement will be enforced by Lagrange
multipliers.
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Define subdomain matrices by subassembly,

p* ?q=/Vp-Vq, p*' M5 5=/pq,
QS
i

G = [ e WK = [AV-u)(T0) + 2pelu) s o),

895N, Q:
! !
My = [0, pTv= [ ).
Qs 87NN

We will use vectors consisting of all subdomain degrees of freedom,

p! ul
p= o, a= N
pr uNe
and the corresponding partitioned matrices,
K; ... 0 K: ... 0
K;=diag®$)=| : . |, K.=dagK)=| : -
0 ... KV 0 ... K

The matrices M 5 G £, and M, are defined similarly, and
T ... TbHN

~

T =(T"),, = : . :
TNsL . TNsNe

Let Ny and N, be the matrices with 0,1 entries of the global to local maps corre-
sponding to the decompositions of {2y and €, respectively, cf., (3.1), so that

K; = N;K;Ny, K, = N'K.N,.

Let By = (B},... ,B;Vf) and B, = (Bl,...,BY¢) be matrices of full rank such that
the conditions Byp = 0 and B.l1i = 0 express the constraint that the values of the
same degrees of freedom on two different subdomains coincide, that is, Byp =0 <=
p = Nyp for some p, and B,li = 0 <= i = N,u for some u. See [8] for details
on the construction of such matrices with entries 0, +1. Here, we use the matrices
from [8] and orthogonalize their rows for numerical stability; the resulting matrices
are still sparse.

Multiplying the second equation in (2.6) by w?ps to symmetrize the off-diagonal
block and introducing Lagrange multipliers Ay and A, for the constraints Byp = 0
and B.u = 0, we get the system of linear equations in block form,

—K; + E*M; — ikG —w?p;T B, 0 p i
~w?ps T Wp(-Ke+w?N) 0 By || & |0
B; 0 0 0 As 0’
0 B. 0 0 Ae 0
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where N'f = r. Similarly as in [8], it can be shown that the system (3.4) is equivalent
to (2.6) in the sense that (p,u) is a solution of (2.6) if and only if (p, 1, A¢, Ae) with
p = Nyp, @t = N.u, is a solution of (3.4) for some Ay and ..

Using the properties of the global to local maps N and N, it is easy to see that
(P, 1, Af, Ae) is a solution of (3.4) if and only if p = Nyp and @t = N.u, where (p,u)
solves (2.6).

We will want to eventually eliminate the variables p and . But the matrices
—-K; + k*M; and —K. + w?M, may be singular due to resonance. For this reason,
the continuity of normal derivative and traction between subdomains are replaced by
artificial radiation conditions,

) op® ) opt
¢ ot ¢ ¢
p’ +io? k% =u'+io skﬁ on 9Q% N 9N (3.5)
and
u® +ioar(u®)v® = ul +iocar(ul)vt, on QN ONL. (3.6)
Here, 0%t = £1 or 0, 0** = —¢?*, and

a = apwy/pe(\ +2p). (3.7

If o°® = +1, the interface condition (3.5) allows a plane wave to pass in one nor-
mal direction through the interface between the subdomains. Similarly, by a simple
computation, the condition (3.6) with ag = 1 is satisfied by the plane pressure wave

i“d- A+2
u@)=de's T Ja =1, =y :"‘, (3.8)

in one of the normal directions, d = £v°. An alternative form of (3.6) is

vi(u® - v®) +ioar(u)v® = v (ut - vh) +io®tar(ut)r! on 80% NN, (3.9)

which, for a from (3.7) with ap = 1, is also satisfied by the pressure wave (3.8) in
normal direction. In [9], the condition (3.9) with & = wp, was used.

This change of intersubdomain interface conditions corresponds to replacing the
subdomain matrices —K 7 + k2M; and —K, + w?M, by regularized matrices

A; = —K;+EM;+ikGy + Ry,
Ae = _K6+w2Me+Re;

where the regularization matrices are given by

Ny
f{f = diag(R}), ps'Rj’cqs =ik Z ot / pq
Z; Q3 NoQY
between fluid subdomains, and
N,
R, = diag(R?), w?'Rive = ia Z o®t / u-v, (3.10)
=1 sasnear

t#s
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between elastic subdomains for the interface condition (3.6) and by

N,

R, = diag(R?), w'RIVE = ia Z ot W -u) (v -v), (3.11)
Zl sasnant
t#s e e

if (3.9) is used.

It is shown in [6] for the Helmholtz equation that if for a given s, all o°¢ > 0 or
all ot < 0 with some o # 0, then A; is invertible. The case of elastic subdomains
is similar. For details on strategies for choosing o*¢ to guarantee this, see [6]. In our
computations, we simply choose ot = +1 if s > t, U‘}t =-1lifs<t.

Because

"RyN; =0, N.R.N.=0,
the effect of adding the matrices Ry, Ry cancels in the assembled system, and the
system (3.4) is equivalent to

Ay —w?pT B; 0 p i
—w?p; T WlpsA, 0 B i 0
= 3.12
B, 0 0 0 || N 0 (3.12)
0 B, 0 0 Ae 0

Eliminating the original degrees of freedom at this point does not result in inde-
pendent computation in each subdomain, because of coupling of degrees of freedom
across the wet interface by the matrix T. Hence, we first duplicate the interface de-
grees of freedom as follows. Since the value of T depends on the values of & on T
only, we have

Ta=TJ.ar, dr=J4q,
where J, is the matrix of the operator of embedding a subvector that corresponds to
degrees of freedom on I into 11 by adding zero entries. Similarly,

T'p=T3;pr, pr=JI}p

Therefore, we obtain the augmented system equivalent to (3.12),

A, 0 B} 0 0 —w?p; T3, p i
0 w2pfAe 0 Ble —w2prlJf 0 a 0
By 0 0 0 0 0 Af 0
= 1
0 B, 0 0 0 0 Ae 0 (3.13)
J 0 0 0 -1 0 Pr 0
0 J. 0 0 0 —I ar 0

Because the variables in a coupled system typically have vastly different scales, we
use symmetric diagonal scaling to get the scaled system

A; 0 By 0o 0o -TJ p F
0 A, 0 B, -T'J; 0 i 0
B 0 0 0 0 0 s 0
- ol = , 3.14
0 B. 0 0 0 0 Ae 0 (8.14)
Jo 0 0 0 I 0 pr 0
0 J, 0 0 0 -1 ar 0
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where the matrices and the vectors scale as A; = D;A;Dy, A, = w?p;D.A.D,,
T = w?p;D;TD,, B; = E;B;D;, B, = E.B.D,, ¥ = D;#, p = Dsp, & = D.q,
A = ij\f, A = D.).. The scaling matrices Dy, D, Ef, and E,, are diagonal.
We have chosen scaling matrices with positive diagonal entries such that the absolute
values of the diagonal entries of A and A, are one and the £ norms of the columns
of B, and By are one.

Computing p and u from the first two equations in (3.14) gives

p = A
i = A

'(# - B A; + TJ.iip) (3.15)
Y(-BLX. + T'JsPr) (3.16)

Substituting p and @ from (3.15), (3.16) into the rest of the equations in (3.14), we
obtain the reduced system

Fx=b, (3.17)
where
5 A -1 -1
BfAf B’f . ~0 5 i A01 . —BfAf TJ
0 . - I
F = A1 e e d A1 ) (3.18)
—J}Af B’f ~0 ) —I~ J’fAf TJ,
0 -J.A7'B,  J.AJ'T'I; -1
and ..
As B;A;'F
Ae 0
= - b =
x pr |’ J'A 1§
ur 0

In equation (3.18), the first diagonal block B fA;IB.If is exactly same as in the

FETI-H method for the Helmholtz equation. The second diagonal block By A7 B is
the analogue of FETI-H for the elastodynamic problem.

Evaluating the matrix vector product Fx requires the solution of one independent
problem per subdomain, because

As -Bq o

F 3\6 = ,_~Be‘i , where { (}: I}Ji (-B, )‘f +TJ.ir),
Pr Jta—-pr v=AJ!(- B)\ +T'J;Pr).
ur J.Vv —ar

The iterative method then consists of solving the linear system (3.17) by GMRES
preconditioned by a subspace correction as follows. Let Q be a matrix with the same
number of rows as F and linearly independent columns. The columns of Q form the
basis of the coarse space. The orthogonality condition

Q'(Fx —b) =0, (3.19)

is enforced through the iterations by adding a correction from the coarse space in each
iteration. That is, GMRES is applied to the preconditioned system

PFx = Pb, (3.20)
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where P = (I - Q(Q'FQ) 'Q'F) and the initial approximation x = Q(Q'FQ) 'b
satisfies (3.19). Because the increments are in the range of P and Q'FP = 0, all
iterates satisfy (3.19).

We choose the matrix Q of the form

DB diag(Y3), 0 0 0
0 D.B.diag(Y?$), 0 0 (3.21)
0 0 D, ¥} diag(Z5), 0 '
0 0 0 D.J.diag(Zs),

and orthogonalize its columns by the QR algorithm. For a fluid subdomain QF,
we choose Y3 as the matrix of columns that are discrete representations of plane
waves in a small number of equally distributed directions, or discrete representation
of the constant function. For a solid subdomain (27, the columns of Y are discrete
representations of plane pressure and shear waves, or of rigid body motions. The
matrices Z} and Z; are chosen in the same way as Y} and Y. See [9] for further
details and a discussion why the method for the coupled problem can be expected to
perform about as FETI-H for the fluid and the elastic parts separately.

4. Radiation-Like Condition on the Wet Interface. For some frequencies,
the matrix —K, + w?>M, in the coupled system (2.6) will be singular. The inverse of
this matrix is required by the method if there is only one elastic subdomain. Therefore,
in this case, we replace (2.6) by an equivalent system, obtained by adding to the second
block of equations a linear combination of the first block in such a way that the term
added to —K, + w?M, resembles a radiation condition:

-Kj +k2Mf —ikGy —pfw2T p|_
~T' +i— 25T (-K; + BM; —ikGy) —Ko+w?M, +ifT'T | | u | =P

(4.1)
where

r
y=1,_28
i=p o T'r
To obtain an added term with consistent physical units and similar to the artificial
radiation condition (3.10), we choose

§ = gy PeA T2 (4.2)

Tl

In the case of more than several fluid subdomains and one elastic subdomain, this
process is easily implemented using the local subdomain matrices for T. For more
than one elastic subdomain, computational experiments indicate that introducing an
artificial radiation condition on the wet interface is not necessary.

5. Computational results. Computational results showing scalability of the
method were presented in [9]. Here, we focus on the performance of the method when
k equals or is close to a value that makes some of the subdomain matrices singular,
and for different choices of the radiation-like condition between elastic subdomains.
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Figure 5.1: Model 2D Problem

In

Fd — v Fa

I'n

We consider a model 2D problem with a scatterer in the center a waveguide, cf.,
Fig. 5.1. The fluid domain Qy is a square with side 1 m, filled with water with density
ps = 1000kgm 3 and speed of sound c¢; = 1500m s~ '. The scatterer is a square in
the center of the fluid domain, consisting of aluminum with density p, = 2700 kgm—3
and Lamé elasticity coefficients A = 5.5263.101° Nm =2, u = 2.595.10'° N m~2. The
domain is discretized with a mesh of 200 by 200 bilinear elements. The coarse space
consists of 8 plane waves in the fluid subdomains and 4 plane pressure waves and
4 plane shear waves in the solid subdomains (the first two blocks of the matrix Q
in (3.21)). The same number of coarse space functions is used for the coarse space for
the wet interface (the last two blocks of the matrix Q). The iterations are terminated
when the relative residual reached 107%. Then the scaled residual in the original
variables are checked,

|di — 2, Kijz
B S Ao 7
where z, K, and d are the solution vector, the matrix, and the right-hand-side, re-
spectively, of the coupled system (2.6). In all cases when the iterations converged,
this scaled residual was of the order 1076 to 1077.

Figure 5.2 shows the number of iterations for varying constant o in the artificial
radiation condition (3.6) between elastic subdomains. The scatter was size 0.4 by 0.4
and the fluid and the elastic domains were decomposed into 4 subdomains each. One
can see that the number of iterations for ay = 1 is slightly larger over all frequen-
cies, while the iterations diverge for frequencies equal to or very close the resonance
frequencies for oy < 1074,

The number of iterations for the same test problem and the artifical radiation
condition (3.9) was almost exactly same (not shown).

Figure 5.3 reports the number of iterations for the same problem with the artificial

(5.1)
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0
s 107 10
-3 10

. 1 074 10
6 107°

alphao

Figure 5.2: Number of iterations for different o in artificial radiation condition (3.6)
between elastic subdomains

-6 10°

alpha0

Figure 5.3: Number of iterations for different g in artificial radiation condition (3.6)
between elastic subdomains and selection of basis instead of orthogonalization of the
rows of B and the columns of Q
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beta0

Figure 5.4: Number of iterations for different 5y in artificial radiation on wet interface
by (4.1) and (4.2)

radiation condition (3.6) between elastic subdomains, but instead of orthogonalization
of the rows of the matrices B and the columns of the matrix Q, bases are selected
as linearly independent subsets. There are more iterations required and divergence
occurs for more frequencies and larger values of the parameter aq.

Figure 5.4 reports the number of iterations for decreasing strength fy of the artifi-
cial radiation-like term on the wet interface. The scatterer was size 0.2 by 0.2, forming
one elastic subdomain, and the fluid domain was decomposed along the midlines of the
square into 4 subdomains. One can see that the choice Sy = 1 increases the number of
iterations significantly over all frequencies, while for 8y = 1073, the iterations diverge
for frequencies equal to or close to a resonance frequency. The elastic subdomain
in this experiment is of the same size as the elastic subdomain for the examples in
Figure 5.2, so the resonance frequencies are same.
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